Learning Kinetic Pathways from Single-Molecule FRET Measurements

Jan-Willem van de Meent, Ruben Gonzalez, Chris Wiggins Columbia University

Elongation

Α Ε P fMet-tRNA aminoacyl-tRNA -EF-Tu

Translocation

Ramakrishnan et al – http://www.mrc-lmb.cam.ac.uk/ribo/

EF-G

Single-Molecule FRET

Kinetic Scheme

Kinetic Scheme

Tinoco and Gonzalez, Genes Dev, 2011

Fei et al, PNAS, 2009

Tinoco and Gonzalez, Genes Dev, 2011

Fei et al, PNAS, 2009

1. Identify states

1. Identify states

2. Calculate Kinetic Rates

1. Identify states

- 2. Calculate Kinetic Rates
- 3. Construct Consensus Model

1. Identify states

- 2. Calculate Kinetic Rates
- 3. Construct Consensus Model
- 4. Distinguish Subpopulations

Tethered Particle Motion

Phillips Group, Caltech

Tethered Particle Motion

Phillips Group, Caltech

Magnetic Tweezers

Neuman Group, NIH

Magnetic Tweezers

Neuman Group, NIH

Experiment -> Kinetic Pathway

- Many molecules
- Lots of noise, thermal fluctuations
- Few transitions per molecule

Fancy Counting

Probability for each side

Probability for each side

Two Easy Pieces

$p(w \mid n, n_0)$ \propto $p(n \mid w, n_0)$ $p(w \mid n_0)$ PosteriorObservationsPrior

$$p(w \mid n, n_0) \propto p(n \mid w, n_0)$$
 $p(w \mid n_0)$ PosteriorObservationsPrior

$$p(w \mid n, n_0) \propto$$
 $p(n \mid w, n_0)$ $p(w \mid n_0)$ PosteriorObservationsPrior

$$p(w \mid n, n_0) = p(w \mid n + n_0)$$

$$p(w \mid n, n_0) = p(w \mid n + n_0)$$

Question: What is best choice for n₀?

Finding States

FRET Signal

FRET Signal

FRET Signal

FRET Signal

Idea: Find probability of belonging to each state

 $p(z \mid x, \theta) = p(x \mid z, \theta)p(z \mid \theta)/p(x \mid \theta)$ $\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$ posterior observations prior likelihood

Maximum Likelihood

$$p(x \mid \theta) = \sum_{z} p(x, z \mid \theta)$$

Likelihood

Expectation Maximization1. calculate $p(z | x, \theta^i)$ 2. calculate θ^{i+1} from $p(z | x, \theta^i)$

Maximum Likelihood

$$L = \log p(x \mid \theta) = \log \left[\sum_{z} p(x, z \mid \theta) \right]$$

Log-Likelihood

Expectation Maximization1. calculate $p(z | x, \theta^i)$ 2. calculate θ^{i+1} from $p(z | x, \theta^i)$

Maximum Likelihood

$$L = \log p(x \mid \theta) = \log \left[\sum_{z} p(x, z \mid \theta) \right]$$

Log-Likelihood

Gaussian Mixture Model

We've learned:

parameters: $\theta = \{\mu, \sigma, \pi\}$ states: $p(z \mid x, \theta)$

Gaussian Mixture Model

We've learned:

parameters: $\theta = \{\mu, \sigma, \pi\}$ states: $p(z \mid x, \theta)$

Gaussian Mixture Model

Accurate for occupancy of states, not so good for rate estimates

Learning Rates

Graphical Models

 $p(x,z \mid \mu,\sigma,\pi) = p(x \mid z,\mu,\sigma)p(z \mid \pi)$

probability of state depends on previous state $p(z_{t+1} = l \mid z_t = k) = A_{kl}$

time [-]

μ, σ

 $p(z_1=k)=\pi_k$

 $p(z_{t+1}=l \mid z_t=k) = A_{kl}$

 $p(x_t \mid z_t = k) = N(x_t \mid \mu_k, \sigma_k)$

We've learned:

parameters: $\theta = \{\mu, \sigma, \pi, A\}$ states: $p(z \mid x, \theta)$

How Many States?
Model Complexity

72

Maximum Evidence

Log-Likelihood

$$L = \log p(x \mid \theta) = \log \left[\sum_{z} p(x, z \mid \theta) \right]$$

Log-Evidence

$$L = \log p(x \mid u) = \log \left[\sum_{z} \int d\theta \, p(x, z \mid \theta) p(\theta \mid u) \right]$$

Maximum Evidence

Log-Likelihood

$$L = \log p(x \mid \theta) = \log \left[\sum_{z} p(x, z \mid \theta) \right]$$

Log-Evidence

$$L = \log p(x | u) = \log \left[\sum_{z} \int d\theta \, p(x, z | \theta) p(\theta | u) \right]$$

Prior

Maximum Evidence

Log-Likelihood

$$L = \log p(x \mid \theta) = \log \left[\sum_{z} p(x, z \mid \theta) \right]$$

$$L = \log p(x \mid u) = \log \left[\sum_{z} \int d\theta \, p(x, z \mid \theta) p(\theta \mid u) \right]$$

best model has highest average likelihood

Variational Bayes

We've learned:

parameters: $q(\theta \mid w)$

states: $p(z | x, \theta)$

Variational Bayes

We've learned:

parameters: $q(\theta \mid w)$

states: $p(z | x, \theta)$

Variational Bayes

We've learned:

states: $p(z | x, \theta)$

Consensus Analysis

Learning Kinetics from Traces

1. Identify states

2. Calculate Kinetic Rates

Learning Kinetics from Traces

1. Identify states

2. Calculate Kinetic Rates

3. Construct Consensus Model

Hierarchical Updates

$$\frac{\partial}{\partial u}\sum_{n}\mathcal{L}_{n}=0$$

Empirical Bayes on HMM's

VBEM Updates

 $\frac{\delta \mathcal{L}_n}{\delta q(\theta_n)} = 0$ $\frac{\delta \mathcal{L}_n}{\delta q(z_n)} = 0$

1. Run VBEM on each trace

- Update q(z_n)
- Update $q(\theta_n | w_n)$

Until L_n converges

2. Update $p(\theta \mid u)$

Until ΣL_n converges

Hierarchical Updates

$$\frac{\partial}{\partial u}\sum_{n}\mathcal{L}_{n}=0$$

Empirical Bayes on HMM's

1. Run VBEM on each trace

- Update q(z_n)
- Update $q(\theta_n | w_n)$

Until L_n converges

2. Update $p(\theta \mid u)$

Until ΣL_n converges

We've learned:

 $p(\theta_n, z_n \mid x_n) \simeq q(\theta_n) q(z_n)$ (for each trace)

p(θ | u) (for ensemble)

Validation

Model Selection

Model Selection

Model Selection

Sub-Populations

Learning Kinetics from Traces

1. Identify states

- 2. Calculate Kinetic Rates
- 3. Construct Consensus Model
- 4. Distinguish Subpopulations

Detecting Subpopulations

Use mixture model of priors

$$p(x \mid u) = \sum_{m} p(x \mid u_{m}) p(y = m \mid v)$$

Detecting Subpopulations

Use mixture model of priors

$$p(x \mid u) = \sum_{m} p(x \mid u_{m}) p(y = m \mid v)$$

Validation on Synthetic Data

Fei, Bronson, Hofman, Srinivas, Wiggins, Gonzalez, PNAS, 2009

107

$$p(z_k) \sim e^{-G_k/k_BT}$$

 $\log p(z_k) - \log p(z_l) = -(G_k - G_l)/k_BT + \text{cst.}$

Graphical Model: Encodes Assumptions

116

Inference: Estimate most probable states and rates

Empirical Bayes: Common Features in Ensemble

Empirical Bayes: Common Features in Ensemble

Model comparison: Mechanistic Hypothesis Testing

119

Model comparison: Mechanistic Hypothesis Testing

120

Empirical Bayes

- Parameter-free
- Learns from all data at once
- Extremely robust under noise
- Access to heterogeneous kinetics

Co-conspirators

Chemistry

Applied Maths

Ruben Gonzalez

Jingyi Fei

Chris Wiggins

Jonathan Bronson

122

Variational Bayes

Log-Evidence

$$L = \log p(x \mid u) = \log \left[\sum_{z} \int d\theta \, p(x, z \mid \theta) p(\theta \mid u) \right]$$

Lower Bound

$$\mathcal{L} = \sum_{z} \int d\theta \, q(z) q(\theta \mid w) \log \left[\frac{p(x, z, \theta \mid u)}{q(z)q(\theta \mid w)} \right]$$

$$\geq \log p(x \mid u)$$

 $q(z)q(\theta \mid w) \simeq p(z,\theta \mid x)$

Variational Bayes

Lower bound tight for true posterior

$$L = \sum_{z} \int d\theta \ p(z, \theta \mid x) \log \left[\frac{p(x, z, \theta \mid u)}{p(z, \theta \mid x)} \right]$$
$$= \sum_{z} \int d\theta \ p(z, \theta \mid x) \log \left[p(x \mid u) \right]$$
$$= \log p(x \mid u)$$

$$\mathcal{L} = \log p(x \mid u) - D_{kl}[q(z)q(\theta \mid w) \parallel p(z,\theta \mid x)]$$