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ABSTRACT Many single-molecule experiments aim to characterize biomolecular processes in terms of kinetic mod-
els that specify the rates of transitions between conformational states of the biomolecule. Estimation of these rates
often requires analysis of a population of molecules, in which the conformational trajectory of each molecule is rep-
resented by a noisy, time-dependent signal trajectory. Although hidden Markov models (HMMs) may be used to infer
the conformational trajectories of individual molecules, estimating a consensus kinetic model from the population of
inferred conformational trajectories remains a statistically difficult task, as inferred parameters vary widely within a
population. Here we demonstrate how a recently-developed empirical Bayesian method for HMMs can be extended
to a enable a more automated and statistically principled approach to two widely occurring tasks in the analysis of
single-molecule fluorescence resonance energy transfer (smFRET) experiments: (i) the characterization of changes
in rates across a series of experiments performed under variable conditions and (ii) the detection of “degenerate”
states that exhibit the same FRET efficiency but differ in their rates of transition. We apply this newly developed
methodology to two studies of the bacterial ribosome, each exemplary of one of these two analysis tasks. We con-
clude with a discussion of model selection techniques for determination of the appropriate number of conformational
states. The code used to perform this analysis and a basic graphical user interface front-end are available as open
source software.

INTRODUCTION

Owing to a host of technological innovations over the past
two decades, single-molecule techniques are now reaching a
level of maturity that makes it possible to perform detailed
mechanistic investigations of some of the cell’s most funda-
mental and complex biomolecular processes (1–5). A large
class of such single-molecule experiments seeks to establish
a kinetic model, defined in terms of a set of structural con-
formations of the molecule (hereafter referred to as ‘states’)
and the rates of transitions between these states. This kinetic
model must be inferred from a set of experimental signal
versus time trajectories that report on conformational transi-
tions in tens, hundreds, or even thousands of signal trajec-
tories. Unfortunately, however, the analysis of large pop-
ulations of trajectories presents several challenges that cur-
rently impair our ability to accurately infer such kinetic mod-
els. Specifically, it remains difficult or impossible to: (i) ac-
curately determine the number of states that are present in
each noisy signal trajectory; (ii) rigorously infer a single ki-
netic model that is consistent with the entire population of
signal trajectories; (iii) directly compare kinetic models for
populations of trajectories recorded under different experi-
mental conditions; and (iv) confidently detect ‘degenerate’
states that exhibit the same signal output, but that differ in

their transition rates. Overcoming these challenges, there-
fore, promises to increase the ease, confidence, and accuracy
with which kinetic models can be inferred from this class of
single-molecule experiments.

The analysis of individual, noisy signal trajectories has
been greatly facilitated by the use of hidden Markov models
(HMMs) (6–8). In the biophysical community, these meth-
ods were introduced within the context of patch-clamp ex-
periments on ion channels (9–11), and have since been ap-
plied within a variety of single-molecule experimental plat-
forms, including optical trapping (12), magnetic tweezer
(13) and single-molecule fluorescence resonance energy
transfer (smFRET) experiments (14–19). In HMM ap-
proaches, a statistical model defines an expected distribution
of measurement values in terms of a set of parameters, such
as the centers and widths of Gaussian peaks representing the
signal values associated with each conformational state, and
the transition probabilities between states. Given this model,
maximum likelihood (ML) techniques (14, 18, 20, 21), such
as those employed in the smFRET data analysis software
packages HaMMy (14) and SMART (18), can determine
the most likely set of parameters and conformational tra-
jectory for each measured signal trajectory. A well-known
deficiency of ML methods, however, is that the likelihood
can always be improved by adding more states to the ki-
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netic model, making it difficult to distinguish real confor-
mational states from states that arise from “overfitting” the
inherently noisy individual signal trajectories. Variational
Bayesian (VB) techniques (15, 16, 19, 22), such as those
employed in the smFRET data analysis software package
vbFRET (15, 16), improve upon ML methods by introduc-
ing a prior distribution, which specifies the expected range of
parameter values, allowing maximization of the “evidence”,
a likelihood that is averaged over this prior. Unlike the likeli-
hood, the evidence is more likely to peak when the signal tra-
jectory is modeled with the optimal number of states. Thus,
VB methods can be used to perform model selection, that is,
to determine the number of states that yields the best aver-
age agreement between the data and the model (see Methods
Section for further background).

While maximization of the evidence has proven an effec-
tive model selection strategy, it does not completely elimi-
nate overfitting, and particularly underfitting, of the signal
trajectories. For example, single-molecule FRET efficiency
(EFRET) trajectories that are particularly noisy (i.e. with a
standard deviation in the EFRET value that is greater than
∼ 0.15) and/or include transitions that are fast relative to
the rate of data acquisition (i.e. more than 1 transition ev-
ery 5 time points) are particularly prone to underfitting (15).
Moreover, existing ML and VB techniques have an impor-
tant shortcoming that has significant theoretical and practical
implications: they can only model individual signal trajecto-
ries, or multiple signal trajectories (17) only if they are mod-
eled with the exact same parameters. For example, it is a
common occurrence that the same state gives rise to a signal
centered at EFRET = 0.30 in one trajectory and EFRET = 0.35
in another, due to variations in the the photophysical prop-
erties of the fluorophores, slight structural differences in the
molecule, and offsetting errors in the measured fluorescence
intensity. Although it might be trivial for an experimen-
talist to recognize that the EFRET = 0.30 and EFRET = 0.35
measurements are different manifestations of the same state,
the ML and VB techniques described above cannot model
this situation. From a theoretical perspective, it is unsatis-
fying that the existing algorithms cannot account for such a
fundamental component of all real experiments that is ob-
vious to the human eye. From a practical perspective, this
shortcoming means that, rather than simultaneously model-
ing a large population of signal trajectories to naturally in-
fer a single kinetic model that is most consistent with the
entire population, the experimentalist must instead individ-
ually model each trajectory and subsequently perform a sig-
nificant amount of post-processing to infer and validate the
single, consensus kinetic model.

Recently, we have developed an empirical Bayesian (EB)
technique (23, 24) that improves upon VB methods by in-
ferring the features of the prior distribution, which in VB
methods must be specified by the experimentalist. In EB es-
timation, the variation in parameter values predicted by the
prior is matched to the variation in inferred parameter values

over the population of trajectories, enabling a single, con-
sensus kinetic model to be learned from the simultaneous
analysis of a large population of signal trajectories (see the
Methods section for a more detailed introduction). We have
benchmarked this EB technique using computer-simulated
data, demonstrating that, relative to both ML and VB meth-
ods, it exhibits a greater resistance to both over- and underfit-
ting of signal trajectories, and have provided a basic exam-
ple showing that this EB technique can be used to analyze
experimental EFRET trajectories (25).

In this paper, we use experimental smFRET data report-
ing on the mechanism of protein synthesis by the bacterial
ribosome to demonstrate how our previously developed EB
method (25) can be extended to perform two very frequently
encountered smFRET data analysis tasks: (i) the compari-
son of the number of states, their occupancy, and associated
transition rates, across experiments recorded for the same
biomolecular system, but under different experimental con-
ditions (e.g. in the absence, presence, and/or varying con-
centrations of a particular buffer or biomolecular compo-
nent), and (ii) the detection of states that exhibit the same
EFRET value, but that have different transition rates. Cur-
rently, most experimentalists treat these problems by per-
forming inference on the individual trajectories, deciding
how many states they believe are in the data via a separate
assessment (e.g., via a transition density plot (14) or similar
(26) metric) and then binning the inference results in an ad
hoc post-processing step. This process is time consuming,
may be prone to user bias, and lacks metrics for assessing
the accuracy of the outcomes. The two extensions of EB es-
timation presented here, in contrast, allow users to quickly
perform analysis in a more automated, statistically rigorous,
and reproducible manner, greatly reducing the potential for
user bias.

Collectively, the results of these analyses highlight the
considerable advantages of EB methods over ML and VB
methods and demonstrate how the simultaneous analysis of
large populations of signal trajectories using EB methods
uniquely enables: (i) automated identification of a common
set of states across various experimental conditions; (ii) de-
tection of small, but statistically significant, differences in
a single state across different experimental conditions; (iii)
characterization of the dependence of the thermodynamic
and kinetic properties of states on experimental conditions;
and (iv) identification of kinetically distinct subpopulations
within a single experiment.

METHODS

Bayesian inference in coupled HMMs

Simply stated, Bayesian inference seeks to determine the
probability of a set of unknown variables in light of a set
of observed data. In the context of single-molecule stud-
ies, these unknown variables are a set of model parameters
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Figure 1: Graphical model for the coupled Bayesian HMM used
in EB and VB methods. (a) smFRET signals and sequence of
latent states for two trajectories in an experiment. (b) Graphical
model showing a HMM for N trajectories with K states. The pa-
rameters θn = {µn ,k , λn ,k , An ,k l , πn ,k} of each trajectory are dis-
tributed to according to a distribution p(θ ∣ψ) with hyperparame-
ters ψ = {mk , βk , ak , bk , αk l , ρk}. ML methods use a non-Bayesian
variant of this HMM, which omits the hyperparameters ψ.

θ and a state sequence zt , whereas the observations are a
signal trajectory xt . A graphical model defines a statistical
relationship between these variables that can commonly be
factored into two terms

p(x , z, θ ∣ψ0) = p(x ∣ z, θ) p(z, θ ∣ψ0) . (1)

The two distributions p(x ∣ z, θ) and p(z, θ ∣ψ0), known as
the likelihood and prior respectively, describe our assump-
tions about the model. The likelihood describes the mea-
surement signal we expect to see given the state trajectory zt
of the molecule and a set of emission model parameters, that
describe the distribution of measurement values associated
with each state. The prior encodes our expectations about
the transition probabilities and emission model parameters.
Based on these assumptions, the goal of Bayesian inference
is now to reason about the so-called posterior probability of
the state trajectory (zt) and model parameters (θ) in in light
of a set of measurements (xt). Bayes’ rule states that this
posterior probability p(z, θ ∣ x ,ψ) can be expressed as

p(z, θ ∣ x ,ψ0) =
p(x ∣ z, θ)p(z, θ ∣ψ0)

p(x ∣ψ0)
. (2)

The prior for a HMM can be written as p(z, θ ∣ψ0) =

p(z ∣ θ) p(θ ∣ψ0), where the probability p(z ∣ θ) depends
on two model parameters. The first is a transition matrix
Ak l that specifies the probability of entering state l from
state k at any given time. The second is a set of proba-
bilities πk that specify the likelihood of starting in state k.
The form of the likelihood p(x ∣ z, θ) depends on the type

of experimental technique considered. In the case of sm-
FRET experiments, a common approach (14–16, 18, 25)
is to model the signal for each state k as a Gaussian peak
with center µk and width σk , or precision λk = 1/σ 2k . The
parameters that describe any given trajectory are therefore
θ = {µ, λ,A, π}. The prior distribution p(θ ∣ψ0) on the pa-
rameters can itself be defined in terms of a set of hyperpa-
rameters ψ0 = {m0 , β0 , a0 , b0 , α0 , ρ0} (see Supplementary
Material).

The structure of the probabilistic relationships that define
a HMM can be represented as a network, or more precisely
as a directed acyclic graph (22, 27). In this network, the
nodes are individual variables and edges signify dependen-
cies. Such a graphical model for a coupled HMM on N tra-
jectories with K states is shown in Fig. 1. The dependency
structure between variables in this model reflects three fun-
damental assumptions about the data: (1) at each time, there
is a fixed probability of entering into a given state, that de-
pends only on the current state, and has no memory of earlier
parts of the state trajectory; (2) observations associated with
a given state are independent and identically distributed.;
and (3) the parameters θn of each trajectory are ‘coupled’
through a shared prior p(θn ∣ψ0), whose distribution reflects
the variability of parameter values in an experiment.

The main difficulty in Bayesian inference is that the pos-
terior p(z, θ ∣ x ,ψ0) can typically not be calculated directly.
This is because the normalizing term p(x ∣ψ0) in Eq. 2,
known as the evidence, involves an intractable integral. In
the EB approach used here we approximate the evidence
p(x ∣ψ) with the same techniques as those employed in VB
estimation: we use a pair of distributions q(z) and q(θ ∣ψ)

to approximate the posterior with a factorized form

p(z, θ ∣ x ,ψ0) ≃ q(z) q(θ ∣ψ) . (3)

Whereas ML methods obtain a point estimate for the opti-
mal parameters θ, this approach yields a distribution q(θ ∣ψ)

defined in terms of a set of posterior parameters ψ. The rela-
tionship between ψ and ψ0 reflects an important principle
of Bayesian statistics. The posterior parameters have the
same form as the prior parameters, but define a more tightly
peaked distribution that reflects our increased knowledge in
light of the measurements. More precisely put, ψ can be cal-
culated from a set of “sufficient statistics” T (see Section S2
in the Supplementary Material). For a HMM these statistics
are given by

γtk = Eq(z)[ztk] , ξk l = ∑t Eq(z)[z(t+1)l ztk] , (4)

Γk = ∑t γtk , Xk = ∑t γtkxt , Uk = ∑t γtkx2t . (5)

The statistics T = {γ, ξ, Γ, X ,U} summarize the information
contained in each trajectory in terms of the amount of time
spent in each state Γk , the number of transitions between
states ξk l , the mean Xk/Γk measurement value for each state,
and its variance Uk/Γk − (Xk/Γk)2.
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The posterior parameters can be calculated directly from
the sufficient statistics and the prior parameters (see Section
S3.3 of the Supplementary Material for details). For exam-
ple, the posterior for the transition probabilities q(A ∣ α)

αk l = ξk l + α0,k l , (6)

is simply the sum of the number of transitions ξ that we be-
lieve we have seen in the trajectory, and the equivalent num-
ber of transitions of the prior α0.

In general, placing a prior on the parameters is equiva-
lent to assuming that one has already seen a number of data
points with statistics T0 before seeing the measurements xt .
The number of equivalent observations associated with T0
determine how quickly the posterior will change in light of
new observations.

Empirical Bayes (EB) estimation (23–25) extends VB es-
timation to perform simultaneous inference on populations
of trajectories. To do so, we learn N approximate pos-
terior distributions q(θn ∣ψn) for each trajectory xn . The
prior p(θ ∣ψ0) is subsequently chosen by way of a self-
consistency requirement; the range of θn values predicted
by the posterior distributions should match that of the prior.
This is equivalent to choosing a set of prior parameters
whose distribution is ‘as close as possible’ to the average
posterior (see Section S4 of the Supplementary material).
In a mathematical sense, this estimation procedure approxi-
mates the log evidence log p(x ∣ψ0) with a lower bound L

L = ∑
n
Eq(zn)q(θn ∣ψn) [log

p(xn , zn , θn ∣ψ0)
q(zn)q(θn ∣ψn)

] , (7)

by iteratively finding solutions to the equations

δL
δq(zn)

= 0 ,
δL

δq(θn ∣ψn)
= 0 ,

∂L
∂ψ0

= 0 . (8)

A full derivation of each of these update steps in this algo-
rithm can be found in Sections S3 and S4 of the Supplemen-
tary Material of this paper.

In summary, the EB approach to kinetic analysis uses hid-
den Markov models to calculate two sets of quantities. For
each trajectory we obtain a set of trajectory statistics Tn ,
which report on the occupancy, transitions and measurement
values associated with each state. The second quantity is
a set of prior parameters ψ0 = ψ(T0), which represent the
characteristics that all signal trajectories have in common.
Finally, a set of posterior parameters ψn = ψ(Tn + T0) en-
codes what we know about the parameters of individual tra-
jectories in light of the measured signal. Note that the prior
parameters ψ0 that can be equivalently defined in terms of
a set of prior statistics T0, whereas the posterior statistics
are simply the sum of the prior statistics and the trajectory
statistics.

We reiterate that EB estimation differs from VB estima-
tion only in the fact that the hyperparameters ψ0 are not

chosen by the user, and held fixed, but are set to the values
that maximize the evidence as part of the inference proce-
dure. This allows for more accurate inference, as knowledge
of “typical” parameter values results in better estimates of
Tn . Moreover, since the learned EB prior is typically less
broadly peaked than the postulated prior in VB methods,
the effective number of observations for each posterior is
larger, resulting in tighter confidence bounds on parameter
estimates for individual trajectories (25). Indeed, past anal-
ysis of simulated data, for which the true state sequence is
known, has shown that EB inference systematically outper-
forms VB and ML methods, both in terms of parameter esti-
mation and in model selection tasks (25).

Analysis of labeled and unlabeled subpopulations of sig-
nal trajectories

In this section we extend of the EB method to perform com-
monly occurring advanced analysis tasks, which we illus-
trate in the next sections using two experimental smFRET
studies that each investigate aspects of translation, the mech-
anism by which the bacterial ribosome synthesizes the pro-
tein that is encoded by a messenger RNA (mRNA) template
(see (1) for a review). The goal of analysis in the first exam-
ple is to coherently detect the set of states that can be sam-
pled across experiments performed in the presence and ab-
sence of other biomolecular components, and subsequently
separately estimate the transition rates for each experiment.
In the second example, our goal is to extend the EB method
to detect subpopulations of trajectories that sample the same
two states, but do so with different transition rates.

The common denominator in both these analysis tasks is
that we seek to use measurements of large populations of
trajectories to identify a common set of states and determine
how transition rates differ for subpopulations of molecules
within this aggregate data. In the case of the first set of
experiments, we have ‘labeled’ subpopulations consisting
of sets of signal trajectories recorded under identical ex-
perimental conditions, and we simply wish to obtain per-
experiment estimates of the transition rates based on a shared
definition of states. In the case of the second study, each ex-
periment contains two ‘unlabeled’ subpopulations and the
set of signal trajectories associated with each subpopulation
must be inferred from the data.

To allow more straightforward analysis of labeled and un-
labeled subpopulations, we will extend the EB estimation
procedure in the following manner. Rather than estimate a
single set of prior parameters ψ0 from the trajectory statistics
Tn , we split our population in into M fractions with prior pa-
rameters ψ0m . We introduce a new variable ynm for the pop-
ulation membership of each signal trajectory. This variable
is simply a binary indicator that is 1 if trajectory n is part
of population m. For labeled populations the values for y
are known, and we can estimate distributions for individual
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populations from the restricted set of posterior distributions

p(θ ∣ ψ0m) ≃∑

n
ynmq(θ ∣ ψn)/∑

n
ynm . (9)

In the case of unlabeled subpopulations, y must be inferred
from the data. In order to do so we generalize the EB ap-
proach to a mixture of distributions p(xn ∣ψ0m), where we
assume a discrete prior p(y ∣ ϕ) on the subpopulation mem-
bership. The evidence can now be expressed as a marginal
over all possible y values

p(x ∣ ψ0) =∑
y
p(x ∣ y,ψ0)p(y ∣ ϕ) , (10)

=∑

n
∑

yn
∏

m
p(x ∣ ψ0m)

ynmϕynm
m . (11)

An expectation maximization algorithm over this mixture
can be be constructed by introducing a variational posterior
q(y) and maximizing the lower bound

L = Eq(z ∣ y)q(θ ∣ y)q(y)[log p(x , y, z, θ ∣ψ0)] . (12)

We can subsequently estimate the statistic ωnm =

Eq(y)[ynm] from the lower bounds Lnm ≥ log p(xn ∣ψ0m)

ωnm =

exp(Lnm)ϕm

∑m′ exp(Lnm′)ϕ′m
. (13)

In the resulting EB procedure the expectation values with re-
spect to the approximate posteriors are now weighted by the
population weights (see Section S4.5 of the Supplementary
Material)

p(θ ∣ψ0m) ≃∑

n
ωnmq(θ ∣ψnm)/∑

n
ωnm . (14)

Software Implementation

All analysis algorithms are implemented in MATLAB, with
essential inner components (i.e. the forward-backward and
viterbi algorithms) written in C as MEX files. Our imple-
mentation uses multiple processors when available. We per-
formed a simple benchmark in Matlab 2013a on a Macbook
equipped with a 4-core 2.3GHz Core i7 processor, using a
computer-simulated dataset with N = 350 trajectories of av-
erage length T = 112. Analysis with 2-6 states required 240 s
using 8 nodes and 600 s using a single node. In compari-
son, our previously released vbFRET software (15) required
1500 s to analyze the same dataset on the same machine.

A line-by-line derivation of the implemented EB esti-
mation algorithm and its extensions can be found in the
Supplementary Material on-line. A command-line version
of the source code used in this publication, along with a
GUI frontend for basic EB estimation tasks, are available at
http://ebfret.github.io. This software supports a new single-
modecule data (SMD) format that has been designed in col-
laboration with the Herschlag group at Stanford to enable ex-
change of data and analysis results between research groups
(28).

Figure 2: smFRET study of IF3 conformational dynamics on the
30S initiation complex of the bacterial ribosome. (A) Schematic il-
lustrations of experimental contsructs: 30S IC−tRNA−1,−2 , 30S IC−tRNA−2 ,
30S IC−tRNA−1 , 30S IC−tRNA and 30S ICfMet. (B) Per-state observa-
tion histograms. (C) Life time distributions. (D) Free-energy dis-
tributions. The colors blue, green and red are used to label states 1,
2 and 3 respectively in each plot.

Construct VB + Binning EB
ext. int. cpt. ext. int. cpt.

30S IC−tRNA−1,−2 0.54 0.40 0.06 0.63 0.30 0.07

30S IC−tRNA−2 0.52 0.45 0.03 0.47 0.43 0.10

30S IC−tRNA−1 0.23 0.11 0.66 0.14 0.15 0.72

30S IC−tRNA 0.56 0.42 0.02 0.60 0.34 0.06

30S ICfMet 0.15 0.17 0.68 0.15 0.21 0.64

Table 1: Relative occupancies of the ‘extended’, ‘intermediate’ and
‘compact’ states of IF3 obtained from VB analysis performed with
vbFRET (29) and our EB based analysis of labeled subpopulations.

RESULTS

Labeled subpopulations: The role of IF3 conformational
dynamics in regulating translation initiation

We begin by showing how the extended EB estimation pro-
cedure described by Equation 9 can be used to characterize
the dependence of conformational state occupancies, emis-
sion model parameters and transition probabilities on exper-
imental conditions. We do so by analyzing a set of previ-
ously published smFRET (29) experiments that investigate
the role of initiation factor (IF) 3 in regulating the fidelity
with which the bacterial ribosome initiates translation at the
triplet-nucleotide start codon of the mRNA to be translated.

During bacterial translation initiation, the small, or 30S,
ribosomal subunit, IF1, IF2, IF3, a specialized formylme-
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thionyl initiator transfer RNA (fMet-tRNAfMet), and the
mRNA to be translated form a 30S initiation complex
(30S IC) in which the triplet-nucleotide anticodon of fMet-
tRNAfMet is base-paired to the mRNA start codon within the
peptdiyl-tRNA binding (P) site of the 30S subunit (30). Sub-
sequent joining of the large, or 50S, ribosomal subunit to the
30S IC results in the formation of a translation elongation-
competent 70S initiation complex (70S IC). Because errors
in fMet-tRNAfMet or start codon selection can result in mis-
translation of the mRNA sequence, regulating the fidelity of
initiation is crucial to protein synthesis and cellular fitness.
Thus, the major role of IF1, IF2, and IF3 during transla-
tion initiation is to control the fidelity of this process by,
among other mechanisms, coupling the 50S subunit joining
step of the initiation process to the correct selection of fMet-
tRNAfMet and the start codon; the role of IF3 in this mecha-
nism is to prevent 50S subunit joining until fMet-tRNAfMet

and the start codon have been correctly selected into the P
site.

Here we present analysis of smFRET experiments inves-
tigating the role that IF3 conformational dynamics play in
coupling correct fMet-tRNAfMet and start codon selection
to 50S subunit joining (29). IF3 is composed of two glob-
ular domains connected by a flexible linker. When these
domains are labeled with FRET donor and acceptor fluo-
rophores, the value of EFRET = IA/(ID + IA), where IA and
ID are the emission intensities of the acceptor and donor flu-
orophores, respectively) provides a noisy measure of the in-
tramolecular distance between the two domains. Histograms
of the observed EFRET values (Fig. 2A) show two domi-
nant peaks, corresponding to a low-FRET ‘extended’ confor-
mational state, and a high-FRET ‘compact’ conformational
state of 30S IC-bound IF3, whose relative occupancies de-
pend on the presence of the other IFs and fMet-tRNAfMet

on the IC. In addition to these two states, there appear to
be one or more ‘intermediate’ conformational states, which
tend to be shorter lived and have EFRET values that are less
well-defined.

Previous analysis was performed with the vbFRET soft-
ware (15) that obtains VB estimates for each individual
EFRET trajectory. In this particular set of experiments, most
trajectories are ‘static’ (i.e. no conformational transitions are
observed before the fluorophores photobleach). This makes
it more difficult to distinguish between intermediate and ex-
tended or compact states since, within individual trajecto-
ries, there are few transitions that reveal the location of a
state relative to others. For this reason, the resulting EFRET
means of states in each trajectory were assigned to three
empirically chosen bins with intervals [0, 0.3), [0.3, 0.7)
and [0.7, 1.0), where all potential intermediate states were
grouped into the middle interval. The compact state was
found to be highly populated in a correctly assembled 30S
IC, whereas the extended state is highly populated in in-
correctly assembled or incomplete 30S ICs, that either lack
IFs, lack fMet-tRNAfMet, contain an incorrect elongator

EF-G 0 nM 5 nM 50 nM 500 nM 1000 nM

ρ+EF−G 0.13 0.30 0.56 0.65 0.67
∆G+EF−G 1.7 1.2 1.3 1.4 1.4
∆G−EF−G -2.4 -1.7 -0.8 -0.4 -0.4

Table 2: EF-G concentration dependence in unlabeled subpopula-
tion analysis of GS1-GS2 equilibrium, showing the bound fraction
ρ+EF−G, and the free energy difference ∆G between the GS1 and
GS2 state for each subpopulation.

aminoacyl-tRNA; or contain an incorrect near-start codon
(29).

In our analysis, we first performed EB inference on the
aggregate data from five experiments that were recorded un-
der different conditions: 30S IC−tRNA

−1,−2 (lacking IF1, IF2 and
tRNA), 30S IC−tRNA

−2 (lacking IF2 and tRNA), 30S IC−tRNA
−1

(lacking IF1 and tRNA), 30S IC−tRNA (lacking tRNA) and
30S ICfMet (a correctly assembled 30S IC). This aggregate
dataset contained 4233 trajectories with 4.0 ⋅ 105 total data
points. Three states were used in order to facilitate compar-
ison with the previous results based on VB analysis. After
inference, separate parameter distributions were estimated
from the sufficient statistics of each individual experiment as
described in Equation 9. The results of this analysis, which
does not require that the user manually assign the EFRET
means of states in each trajectory to empirically chosen bins,
are in excellent agreement with previous results based on ex-
plicitly defined bin intervals. Fig. 2 shows observation his-
tograms for each state, as well as distributions of the life time
and free energy of each state relative to the other states (see
Section S5 of the Supplementary Material for the definitions
of these quantities). The width of each distribution provides
us with a confidence interval on each of the parameters. The
fractional occupancies obtained for each experiment (Table
1) similarly show a close correspondence to the values ob-
tained with the VB-based results.

Unlabeled subpopulations: The influence of EF-G bind-
ing on the GS1-GS2 equilibrium

We now demonstrate that the extended EB estimation proce-
dure described by Equation 14 can be used to identify kinet-
ically distinct subpopulations of states and estimate the tran-
sition rates for each subpopulation of states. As an example
of this use case, we perform analysis of a set of smFRET ex-
periments investigating the role of elongation factor (EF) G,
a member of the guanosine triphosphatase (GTPase) family
of translation factors, during translation elongation.

After the addition of each amino acid to the nascent
polypeptide chain during translation elongation, EF-G binds
to the ribosomal pre-tranlsocaiton (PRE) complex and hy-
drolyzes one molecule of guanosine triphosphate (GTP) as
it promotes the movement of the ribosome along the mRNA
by precisely one triplet-nucleotide codon, a process termed
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Figure 3: smFRET experiments (31) measuring the influence of
EF-G on the GS1-GS2 equilibrium in the bacterial ribosome. (A)
The kinetic pathway for translocation is believed to have three
steps: A reversible rotation of the two subunits (purple and or-
ange), followed by the binding of EF-G (green) which stabilizes
the rotated GS2 state long enough for a GTP-driven transition to
the post-translocation (POST) complex, blocked here by substitu-
tion of GTP by a non-hydrolyzable analogue. (B) smFRET signals
reporting on the GS1-GS2 transition show a shift of the equilibrium
towards the GS2 state (magenta) in the presence of EF-G.

Figure 4: Analysis of GS1-GS2 equilibrium as a function of EF-G
concentration. (A) Histogram of aggregate measurements, split by
inferred state. (B) EB prior (dashed) and mean posterior (solid) on
the free-energy difference ∆G = GGS1 −GGS2. A bi-modal signature
in the posterior is visible in experiments where EF-G is present. (C)
Prior and posterior after unlabeled subpopulation analysis, showing
an increasing occupancy of the bound fraction (orange) relative to
the non-bound fraction (green) as a function of EF-G concentration.

translocation (Fig. 3A). The overall process of translocation
can be broken up into three, smaller, multi-step processes.
The first of these is a thermally driven, reversible transi-
tion between two global states (denoted as GS1 and GS2) of
the ribosomal pre-translocation (PRE) complex. The over-
all process of translocation can be broken up into three,
smaller, multi-step processes. This conformational transi-
tion is followed by binding of EF-G to the PRE complex,
resulting in a transient stabilization of the GS2 state of the
PRE complex that is long enough to enable the third step,
a GTP hydrolysis-driven movement of the ribosome along
the mRNA. The effect that binding of EF-G has on the dy-
namic equilibrium between the GS1 and GS2 states of the
PRE complex can be studied using smFRET by labeling two
ribosomal structural elements with a FRET donor-acceptor
pair and substituting GTP with a non-hydrolyzable analogue
(GDPNP) that prevents GTP hydrolysis and the associated
movement of the ribosome along its mRNA template.

Fig. 3B shows two EFRET trajectories that exhibit ther-
mally driven, reversible transitions between GS1 and GS2.
The first trajectory is from an experiment that was recorded
in the absence of EF-G and shows a preference for the
GS1 state. The second trajectory, from an experiment that
was recorded in the presence of 500 nM EF-G and 1 mM
GDPNP, shows a dramatic shift of the equilibrium towards
the GS2 state. Qualitative comparison of these two trajecto-
ries suggests that EF-G destabilizes the GS1 state and stabi-
lizes the GS2 state in the subpopulation of EF-G-bound PRE
complexes. In order to quantify this difference in transition
rates and characterize its dependence on EF-G concentra-
tion, we must obtain separate estimates for the distribution
on transition rates for the EF-G-free and EF-G-bound sub-
populations of PRE complexes in an experiment.

EB analysis of a series of experiments performed at in-
creasing EF-G concentrations is shown in Fig. 4. As with
the previous experiment we first analyze the aggregate data
to identify two states. The aggregate data for 7 different EF-
G concentrations contained 2472 trajectories with 2.3 ⋅ 105
total data points. As can be seen in the observation his-
tograms (Fig. 4A), the occupancy of the GS2 state (magenta)
increases with the EF-G concentration. Conventional EB
analysis with a single population (Fig. 4B) naturally reveals
a bimodal signature in the posterior (solid lines) that hints at
the existence of two (unlabeled) subpopulations. This signa-
ture is absent from the prior (dashed lines) since EB analysis
assumes all transition probabilities are governed by the same
prior distribution. Because a very limited number of transi-
tions between GS1 and GS2 can be observed in any one sig-
nal trajectory before one of the fluorophores photobleaches,
it is not possible to obtain a precise estimate of the transition
rates for each individual PRE complex. As a result, the two
peaks in Fig. 4B have a very high degree of overlap, showing
that it would be difficult to determine the population mem-
bership for each signal trajectory using any form of binning
approach. This ambiguity of subpopulation membership is
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Figure 5: EB analysis of IF3 and GS1-GS2 aggregate data for in-
creasing number of states K. (A) Evidence lower bound L and
effective number of populated states Keff as a function of K. (B)
Averaged posterior on state centers µ and life times τ.

greatly reduced when using the subpopulation analysis tech-
nique described in the previous section (see also Section
S4.5 of the Supplementary Material), which produces two
much better resolved peaks (Fig. 4C). Table 2 lists the popu-
lation fraction and free energy difference obtained from EB
estimation with unlabeled subpopulations. As should be ex-
pected, the relative size of the EF-G-bound subpopulation
increases as the concentration of EF-G increases.

Model Selection

One of the stated advantages of VB and EB methods is
that they optimize a lower bound for the log evidence, a
quantity that may be used to decide among analysis results
with different numbers of states. Previous benchmarks us-
ing computer-simulated data have shown that EB estima-
tion systematically outperforms VB and ML methods in
model selection tasks (25). Not only does EB estimation
more accurately determine the number of states in individ-
ual trajectories, preventing both under- and overfitting, but
the method can also determine the correct number of states
starting from a larger number of candidate states, leaving su-
perfluous states unpopulated.

In practice, experimental data differ from simulated data
in that they are never in precise agreement with a given sta-
tistical model. In smFRET experiments, for example, we as-
sume a Gaussian distribution of EFRET values for each state.
With one exception (17), all HMM approaches for analysis
of (time-binned) smFRET data make this same assumption
(14–16, 18). In reality, however, the EFRET value exhibits
a sigmoidal dependence on the distance between the fluo-
rophores, resulting in a distribution of EFRET values that is
skewed towards the middle of the spectrum and exhibits a
subtle, but systematic, deviation from the idealized Gaussian
shape assumed in the model. Distributions of EFRET values
further show heavy tails, that likely arise from artifacts such
as intermittent photo-blinking of fluorophores (32), incor-
rect detection of the photobleaching transition, and errors in
determining the background fluorescence intensity of indi-
vidual trajectories.

In general, systematic discrepancies and artifacts can
cause a statistical algorithm to “correct” for the fact that
observed measurement values are not precisely distributed
according to the assumed model by populating additional
states, as was found to be the case in our initial analysis of
experimental data (25). In Figure. 5 we revisit this notion
by examining results obtained by estimating models with 2-
10 states on the same two datasets that were analyzed in the
previous sections. As in previous work (25), we calculate
an effective number of states Keff = exp[−∑K

k=1 ζk log ζk] in
terms of ζk = ∑n Γnk/∑nk Γnk , the fraction of time points as-
signed to each state. When performing analysis on simulated
data there is typically a range solutions for different K that
yield the same (correct) Keff value and leave any additional
states empty (25). Consistent with our previous study (25),
the results in Fig. 5A show that Keff steadily increases with
the number of candidate states, and it is not clear that there
is an optimum Keff value beyond which the lower bound L
decreases. In other words, the “fit” of experimental data
to the model can be improved by adding incremental, low-
occupancy states that capture outliers in the data, even when
using model selection criteria. This is undesirable behav-
ior, as such outlier states are more likely to be indicative of
measurement artifacts than actual conformational states of
interest. However, it is important to note that this behavior is
different from the typical overfitting that is associated with
ML estimation. ML methods obtain a better fit by assigning
natural statistical variations to separate states, and will do so
even for simulated data that is in perfect agreement with the
hypothesized model. EB analysis generally obtains the cor-
rect result on simulated data, but uncovers ‘unnatural’ vari-
ations in experimental data, that are ‘real’ from a statistical
point of view, but do not contain useful information about
actual conformational transitions.

Examples of these systematic discrepancies can be seen in
Fig. 5B, which shows the averaged posterior distribution on
the state centers µnk and state dwell times τnk obtained by
analyzing the aggregate datasets from the previous sections
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with increasing number of states. When plotted on a loga-
rithmic scale, a Gaussian distribution will have a parabolic
shape. The curves for µnk clearly show both asymmetries
and aberrant tails that deviate from this idealized form. As a
result it is generally difficult to say whether too many states
are used, since the curves obtained at higher K do show a
closer agreement with the shape assumed in the model.

For this reason, we suggest that users do not indiscrim-
inately rely on the lower bound for model selection; thus,
some prudent decision-making with regard to model selec-
tion may still be required on the part of the experimental-
ist. One rule of thumb is to treat states observed in less
than 5% of the trajectories with some caution. Additional
states may simply: (i) capture artifacts, such as intermediate
points between a transition (15), (ii) split a single state into
a short-lived and long-lived variant (which may mean that a
subpopulation as described in Section is necessary), or (iii)
isolate the non-Gaussian tails of actual states. Moreover,
any decreases in the lower bound indicate that the method
has converged to a local maximum, rather than the glob-
ally optimal result, since adding an empty state to the pre-
vious result should result in the same, larger, L value. In this
case, the user may either opt to perform additional restarts
with random initializations of ψ0, to make it more likely
that the global optimum is found for each number of can-
didate states, or accept the point where L begins to decrease
as a bound on the number of states that can be confidently
inferred, given computational limitations. As an example,
the GS1/GS2 experiment shows a decrease in L at K = 6,
whereas the life time plot for the blue state falls off the scale
at K = 5, suggesting that K = 4 is the largest number of states
that is credible. Also note that these 4 states form two pairs
with similar EFRET values but different life times, which is
consistent with our knowledge that this experiment in fact
does contain kinetically distinct subpopulations. Finally, we
note that the conformational trajectory can be inferred with
more confidence when more transitions are observed, as it
allows the inference procedure to more confidently situate
one state relative to others. In cases such as the IF3/30S IC
experiment, where the majority of trajectories do not exhibit
transitions, analysis results could be improved by shuttering
the excitation source to, optimally, obtain a state life time of
order 10 time points.

In summary, while EB methods provide model selec-
tion criteria that are superior to those employed in ML and
VB estimation (when applied to computer-simulated data),
a methodological caveat in any statistical analysis is that
model selection criteria are only as accurate as the repre-
sentation of the measurement data in the model. We em-
phasize that this limitation is by no means unique to EB
analysis. ML and VB approaches typically use precisely the
same Gaussian distribution of measurement values and suf-
fer from the same defects. It is merely the case that these
issues are obfuscated when signal trajectories are analyzed
individually, since an individual signal trajectory rarely con-

tains enough data points to make discrepancies between the
data and the model apparent, and the experimentalist makes
a judgement call as to how many conformational states
they think are required as part of the data inference post-
processing. The advantage of the EB methodology is that
analyzing all trajectories at once allows us to identify sys-
tematic deviations between data and model, allowing us to
assess whether there is sufficient agreement between the data
and the model for model selection criteria to be effective.

DISCUSSION

While HMMs have proven an immensely popular and effec-
tive tool for inferring states and transition rates from individ-
ual signal trajectories, combining results from the analysis of
multiple trajectories has remained a difficult task. Typically,
users manually specify a set of bin intervals, as was done in
our previous, VB-based analysis of the IF3 data (29), that
allow states identified in individual signal trajectories to be
clustered according to their inferred parameter values. In
contrast, the EB method uniquely enables simultaneous in-
ference on multiple signal trajectories in a statistically robust
manner that eliminates the need for user-defined bin inter-
vals, and is consequently less prone to user bias.

By exploiting the advantages of simultaneously analyzing
multiple EFRET trajectories using the EB method, we have
developed estimation procedures that uniquely enable us to
automate widely encountered tasks in the analysis of sm-
FRET experiments. The first of these tasks is exemplified
by our analysis of the IF3 experiments, which demonstrates
how EFRET trajectories from a large number of experiments
recorded under different experimental conditions can first be
simultaneously analyzed to identify a common set of states
and then be subsequently reanalyzed to calculate a separate
prior distribution for each experiment, allowing characteri-
zation of how the state occupancies and transition rates vary
between experiments. The second task is exemplified by our
analysis of the GS1/GS2 experiments, which demonstrates
how the simultaneous analysis of an entire population of
EFRET trajectories can be used to automatically identify and
characterize subpopulations of molecules occupying func-
tionally and/or conformationally distinct states that exhibit
similar EFRET values but that differ in the rates of transitions
between states.

For each set of experiments, the results of the EB-based
analysis are largely consistent with previous results based on
VB methods. However, while the previous VB-based anal-
ysis required the use of experiment-specific post-processing
procedures that are time consuming to implement, subject
to user bias, and difficult to validate, our EB method can be
used to obtain results rapidly and with little to no manual
intervention by the user. Moreover, the EB approach opti-
mizes a well-defined, statistical, model-selection criterion,
the lower bound for the log evidence, which in principle can
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be used to compare and decide among different analyses of
the same data.

Our EB-based analysis of smFRET data also demonstrates
that comparing the prior and posterior distributions can often
provide useful qualitative diagnostics that indicate whether
a given model is appropriate for the data. In the case of the
GS1/GS2 experiments, for example, we are able to calculate
a posterior distribution on the free energy difference between
states that reveals a systematic mismatch between the sin-
gle population of PRE complexes that is assumed in conven-
tional EB analysis and the two subpopulations of PRE com-
plexes that are actually present in the experiment (i.e., EF-
G-free and EF-G-bound). This mismatch is resolved when
we extend our EB method to identify the two subpopula-
tions within the set of multiple EFRET trajectories. Similarly,
combining results from multiple trajectories using our EB
method allows us to see that the distribution of EFRET values
associated with a given conformational state often exhibits
heavy tails and is skewed relative to the Gaussian distribu-
tion that is typically assumed in HMM analyses of smFRET
data. Whereas discrepancies between the data and the statis-
tical model will always exist, they are much more difficult to
detect in individual trajectories (e.g., in ML- and VB-based
HMM analyses of smFRET data). An important advantage
of the EB method, therefore, is that it can tease out such dis-
crepancies, which inform us how our assumptions about the
data need to be adjusted in the next iteration of statistical
model design.

We conclude by noting that the EB estimation framework
is applicable to a wide range of single-molecule techniques.
Although here we have analyzed smFRET experiments ex-
clusively, our approach is by no means restricted to this plat-
form. Adaptation of the EB algorithm presented here to the
analysis of optical trapping and magnetic tweezers experi-
mental data is possible with minimal modifications and we
have recently collaborated to adapt the EB algorithm pre-
sented here to the analysis of tethered particle motion exper-
iments (33).
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